

Pocket A²B[®] Bus Monitor User Guide

1.4 November 2025

© 2025 FlexTech AKT LLC All Rights Reserved

This document contains information that is proprietary to FlexTech AKT LLC. The original recipient of this document may duplicate this document in whole or in part for internal business purposes only, provided that this entire notice appears in all copies. In duplicating any part of this document, the recipient agrees to make every reasonable effort to prevent the unauthorized use and distribution of the proprietary information.

This document is for information and instruction purposes. Flextech AKT LLC reserves the right to make changes in specifications and other information contained in this publication without prior notice, and the reader should, in all cases, consult Flextech AKT to determine whether any changes have been made.

The terms and conditions governing the sale and licensing of Flextech AKT products are set forth in written agreements between Flextech AKT and its customers. No representation or other affirmation of fact contained in this publication shall be deemed to be a warranty or give rise to any liability of Flextech AKT whatsoever.

FLEXTECH AKT MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

FLEXTECH AKT SHALL NOT BE LIABLE FOR ANY INCIDENTAL, INDIRECT, SPECIAL, OR CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING BUT NOT LIMITED TO LOST PROFITS) ARISING OUT OF OR RELATED TO THIS PUBLICATION OR THE INFORMATION CONTAINED IN IT, EVEN IF FLEXTECH AKT HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

U.S. GOVERNMENT LICENSE RIGHTS: The software and documentation were developed entirely at private expense and are commercial computer software and commercial computer software documentation within the meaning of the applicable acquisition regulations. Accordingly, pursuant to FAR 48 CFR 12.212 and DFARS 48 CFR 227.7202, use, duplication and disclosure by or for the U.S. Government or a U.S. Government subcontractor is subject solely to the terms and conditions set forth in the license agreement provided with the software, except for provisions which are contrary to applicable mandatory federal laws.

TRADEMARKS: The trademarks, logos and service marks ("Marks") used herein are the property of Flextech AKT LLC or other parties. No one is permitted to use these Marks without the prior written consent of Flextech AKT or the owner of the Mark, as applicable. The use herein of a third- party Mark is not an attempt to indicate Flextech AKT as a source of a product, but is intended to indicate a product from, or associated with, a particular third party.

Flextech AKT LLC 24613 S 220th St. Queen Creek, AZ 85142

Website: www.flextechakt.com

Contents

Contents	3
Chapter 1. Pocket A2B Bus Monitor Overview	7
Capabilities	7
Delivery Parts List	8
A2B Network System Components	9
Chapter 2. Interfaces	10
Pocket A2B Ports	10
Front View	10
Back View	10
Side View	10
Bottom View	10
LEDs	11
Status LED	11
USB LED	11
I/O LED (Input / Output)	11
Chapter 3. Graphical User Interface (GUI)	12
Initial Setup	12
Install the Graphical User Interface (GUI)	12
Graphical User Interface (GUI) Tour	13
Info Pane	14
Event Trace	14
Chapter 4. Working with the Pocket A2B Bus Monitor	15
Initial Setup	16
Installing the Flextech AKT USB device driver	16
Insert the Pocket Bus Monitor into an A2B Network	17
Position 1: Between the Main Node and the First Downstream Sub Node	
Position 2: Between Two Sub Nodes	17
General Notes	18
Constructing a Test Network (optional)	19
Connecting the Bus Monitor to your Host PC	20
Prerequisites	20
Steps to Connect	20
Enabling Audio and Data capture	22
A2B 1.0	22
A2R 2.0	22

A2B Audio Slot Mapping	23
A2B 1.0	23
A2B 2.0	23
Starting a Capture	24
Routing Audio from A2B to USB	25
Routing Audio Using the Bus Monitor GUI	25
Routing Table	
Recording Audio	27
Bus Monitor GUI	27
Digital Audio Workstation	28
Listening to Audio	29
Recording a Trace	29
Importing a Trace	
Reading an Event Trace	
I2C Transactions	
SPI Transactions	31
Using the Pocket Bus Monitor Command Line	32
Download and Install a Terminal Emulator Utility (Tera Term)	
Hookup	
Using the Command Line	33
General Commands	33
File Management	34
File Commands	34
File Transfers	35
SDCARD	35
Edit Command	36
X/YMODEM	36
Changing Default System Settings	36
System Sample Rate Re-Configuration	36
USB Sound Card Re-Configuration	37
Bus Monitor Commands	38
Connecting to a live A2B 1.0 Bus	39
Step 1: Discover the A2B network with the Bus Monitor Attached	39
Step 2: Dump the settings to a file	39
Step 3: Connect to a live bus	39
Step 4: Begin monitoring	40
Qwiic Peripheral Configuration	41
I2C Commands	41
Qwiic Examples	41
Audio	42
General	42
A2B	42
USB Audio	42

WAV Files	43
Circular Audio Buffer (CBUF)	43
VU Meters	
ASIO	44
Audio Routing	44
AKT Automation	46
Command Scripts	46
Running commands at startup	47
AKT Automation with Lua	47
Bus Monitor GUI Plugins	48
Pre-defined Constants	49
Pre-defined Callbacks	49
plugin_trace()	49
Parameters	49
Return Values	50
Required Plugin Methods	50
plugin_loaded()	50
plugin_unloaded()	50
Parameters	50
Return Values	50
plugin_start()	50
plugin_stop()	50
Parameters	51
Return Values	51
plugin_event()	51
Parameters	51
Return Values	
A2B Bus Monitor Plugin Enumerations and Events	52
BM_GUI_PLUGIN	52
BM_I2C_TYPES	
BM_I2C_CONDITIONS	
BM_I2C_SRC (A2B 2.0 Only)	
BM_EVENTS	53
Updating the Pocket Bus Monitor's Firmware	
Methods to Update the Firmware	
Command-line Initiated AKT Flasher Over USB	56
Command-line via SD card file	56
Bootloader initiated AKT Flasher over USB	56
Chapter 5. Connectors & Cables	58
Included Connectors	58
Bus Monitor Connections	58
Analog Devices Evaluation Platform Connectors	59
Fabricating Custom Cables	59

Chapter 6. Specifications	61
Environmental	61
Ordering Information	61
Chapter 7. Troubleshooting	62

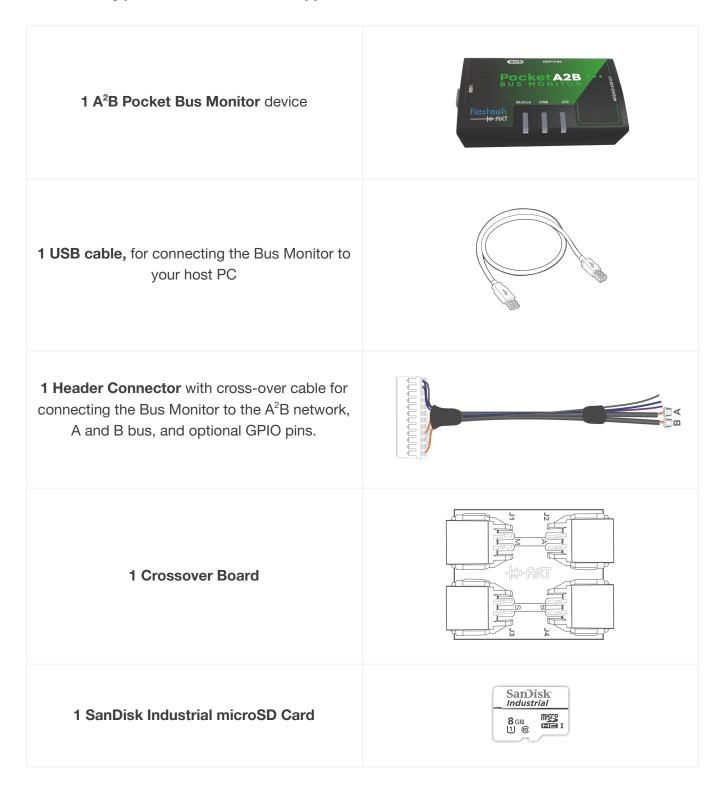
Chapter 1. Pocket A²B Bus Monitor Overview

-mil||m|

The Pocket A²B Bus Monitor system consists of a hardware device and a host-based Graphical User Interface (GUI). The hardware device enables non-intrusive, real-time monitoring of the traffic on an A²B bus. The GUI controls the device and provides tools for capturing and inspecting data. The Pocket A²B Bus Monitor can passively log data between any two nodes on an A²B bus

NOTE: The Main node must configure the Bus Monitor to enable audio and data sniffing. Review the Enabling Audio and Data capture section for more detail.

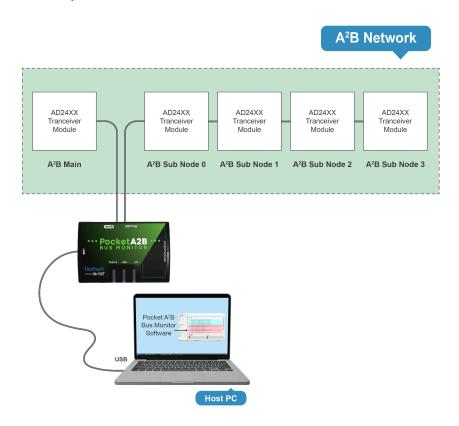
Capabilities


Use the Pocket A²B Bus Monitor as a bench tool, validation tool, or in-vehicle test tool.

The Pocket A²B Bus Monitor can:

- Capture data from the A²B bus **non-intrusively.**
- Continuously log live A²B bus data over USB.
- Record A²B events for timing **analysis**.
- Integrate into larger test and production frameworks.
- AKT Automation

Delivery Parts List


The following parts are included and shipped with the Pocket A²B Bus Monitor:

A²B Network System Components

The following diagram shows how to integrate the Pocket A²B Bus Monitor into an A²B network.

For maximum visibility, insert the device between the Main node and the first Sub node.

	;
Host PC	System that runs the Pocket A ² B Bus Monitor GUI software. In this setup, the Bus Monitor device is connected to Host PC over USB.
GUI software	App for configuring the A ² B Bus Monitor device, observing live data from the A ² B bus, and recording and analyzing traces. The app runs on the host PC and is supported on both Windows and Linux platforms.
USB	Connection used to configure and control the device. It can also be used to view and capture data from the A ² B bus.
Pocket A ² B Bus Monitor	Hardware device that non-intrusively captures data from a live A ² B bus and streams it in real-time over USB to the Pocket A ² B Bus Monitor GUI software.
A ² B network	A ² B networks consist of a single Main node and multiple Sub nodes in a daisy-chained configuration.
Main node	The Main node must properly configure its transceiver to grant permission to the Bus Monitor to capture data from the bus. Review the Enabling Audio and Data capture section for more detail.

This chapter introduces the ports and LEDs found on the device.

Pocket A²B Ports

Front View

1 USB 2.0 high speed type B interface. Main connection to PC.

NOTE: The Pocket Bus Monitor is powered over the USB connection.

Back View

24 Pin Multi I/O Connector. Includes A-side and B-side A²B connections and two independent, bi-directional general purpose 3.3V logic-level GPIO lines with interrupt capability.

Side View

SD Card Slot for file storage and AKT Automation.

Sparkfun Qwiic Expansion Connector

Bottom View

Safe-Boot Recovery button

HW ID and **Serial Number**

For further details on cables and connectors, see Chapter 5. Connectors & Cables

LEDs

LEDs on the top indicate the status of the device when it's powered on.

Each LED reports status two ways:

- Background color Main display color.
- Blink color Cycles on and off, temporarily overriding the background color.

Status LED

LED State	Color	Description
Fast Flash	Green	System OK
	Red	Invalid / missing feature key file. See Troubleshooting.
Slow Blink	Yellow	Bootloader mode active

USB LED

LED State	Color	Description	
Blink	Blue	Activity on the USB bus	
Steady	Blue	Active USB Audio stream	

I/O LED (Input / Output)

LED State	Color	Description
Steady	Green	A ² B Bias OK
	Red	A ² B Bias Reversed. <u>See Troubleshooting.</u>

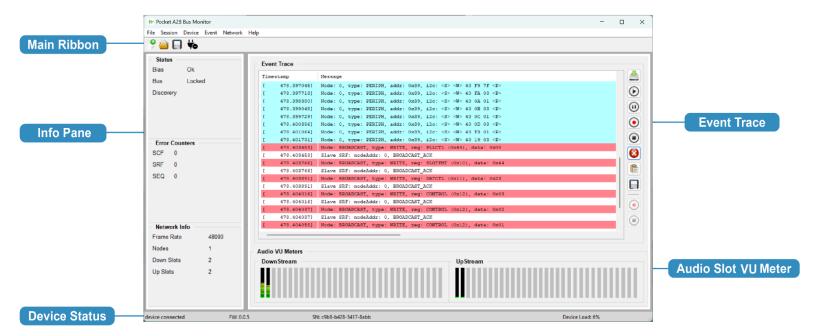
Chapter 3. Graphical User Interface (GUI)

millioli

The **Graphical User Interface (GUI)** interfaces with the Pocket A²B Bus Monitor to capture and analyze data from the A²B bus.

There are two classes of traffic on the A²B bus: **control data** and **audio data**. The GUI displays the control data along with VU meters for audio. Real-time audio is transferred through the Pocket A²B Bus Monitor as a USB sound card.

With the GUI Software You Can:


- Configure the device including USB audio routing.
- Record audio to WAV files over USB.
- Visualize control data on the A²B bus.
- Visualize audio data on the A²B bus.
- Store captures to a file.
- Analyze traces.

Initial Setup

Install the Graphical User Interface (GUI)

Unzip the GUI zip file. Double click the installer executable to start the installation process. Follow the on-screen instructions to complete the installation.

Graphical User Interface (GUI) Tour

Main Ribbon

- Sessions Stores information about the app's layout (window size, window position) and the device configuration. Use session files to quickly restore preferred settings when you start the Bus Monitor GUI. You can create and save sessions to files on your host PC.
- Connections Connect to the Bus Monitor device via USB.
- **Record** Record multichannel A²B audio over USB.

Info Pane — General information about the A²B network.

Device Status Bar — Information about the A²B Bus Monitor, including its hardware ID, firmware version and CPU load.

Event Trace Pane — Real-time stream of the control traffic on the A²B bus. Use the controls on the right side of the pane to record captures.

Audio VU Slot Meters Pane — Real-time view of the levels of all available A²B audio slots. VU meters provide a quick visual indicator that audio is present on a slot. The Bus Monitor automatically determines the active A²B audio slots. Audio slots reserved for SPI over distance are indicated in Blue.

Info Pane

The **Network** heading shows:

- Bias Status, Bus Lock, and Discovery Status
- Detected sample / frame rate (Fs).
- Number of downstream nodes relative to the Bus Monitor's position on the network.
- Number of downstream slots relative to the Bus Monitor's position on the network.
- Number of upstream slots relative to the Bus Monitor's position on the network.

The Bus Monitor also tracks:

- A count of Downstream Frame (SCF/USH) errors.
- A count of Upstream Frame (SRF/DSH) errors.
- A count of sequence (SEQ) errors.

Event Trace

A timestamp is recorded for every event logged in the trace window. Timestamps have microsecond resolution. Time starts when the Bus Monitor powers up.

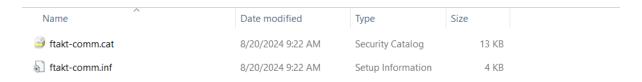
Start, pause, stop, record, save, and clipboard buttons can be used to control visible and saved events.

Chapter 4. Working with the Pocket A²B Bus Monitor

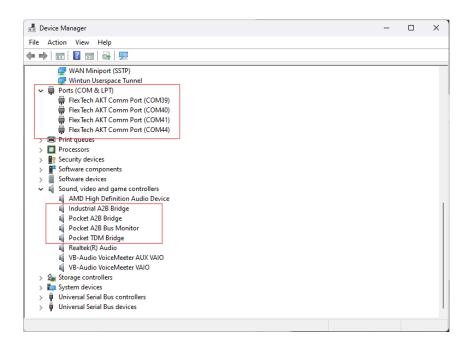
-non||no|r

A typical workflow is covered in this chapter:

- Connect the Pocket Bus Monitor to the A²B network between the Main node and the first downstream Sub node.
- Connect the Bus Monitor to the host PC using the supplied USB cable.
- Start the Pocket Bus Monitor GUI on the host PC.
- Optionally configure audio routes to route A²B audio over USB.
- Perform an A²B bus discovery. Discovery is the process by which the Main node initializes the A²B network and all the nodes on it.
- Capture and store network data.
- Analyze your captures.
- Using the command line


NOTE: The main node must configure the Bus Monitor to enable audio and data sniffing. Review the Enabling Audio and Data capture section for more detail.

Initial Setup

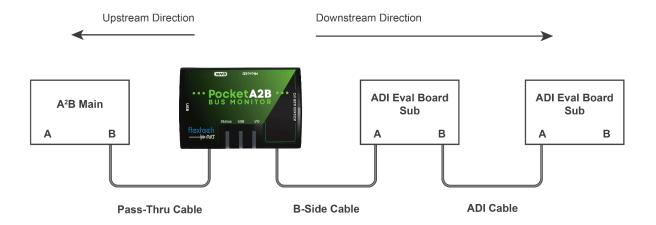

Installing the Flextech AKT USB device driver

To install the USB serial device driver, perform the following steps:

1. Download the ftakt-comm driver from www.flextechakt.com

- 2. Unzip the supplied zip file
- 3. Right Click on the ftakt-comm.inf setup file and select install.
- 4. After installation you will see the FlexTech AKT Comm Port and sound card listed on Windows Device Manager under Ports (Com & LPT).

Insert the Pocket Bus Monitor into an A²B Network


The following sections describe two positions the Bus Monitor can be connected in an A²B network and procedures for establishing the connection.

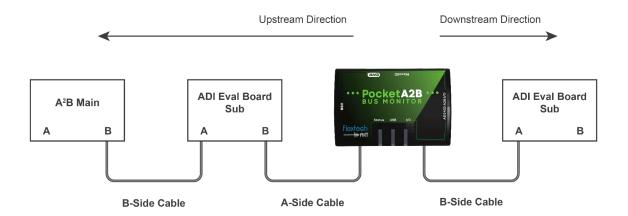
For further details on cables and connectors, see Chapter 5. Connectors & Cables

Position 1: Between the Main Node and the First Downstream Sub Node

The most common way to position the Bus Monitor is between the main node and the first downstream Sub node. From this perspective, the Bus Monitor can **see all data on the network**, except sub-to-sub audio traffic. From this position the A²B Bus Monitor can capture the entire network discovery sequence.

The following diagram shows the connections for this setup:

Position 1 Connection Setup:


- 1. Connect the **B-side** of the Main node (or A²B Pocket Bridge) **to the A-side** of the Bus Monitor.
- 2. Connect the **B-side** of the Bus Monitor to the **A-side** of the first downstream Sub node.

Position 2: Between Two Sub Nodes

From this perspective, the Bus Monitor has a narrowed view of the network. The Bus Monitor can only monitor traffic destined for nodes downstream from this position. Use this position when you need to

capture sub-to-sub audio or tunneled SPI data. Sub-to-sub audio is invisible to the Main node and cannot be observed when the Bus Monitor is positioned immediately after the Main node.

The following diagram shows the connections for this setup:

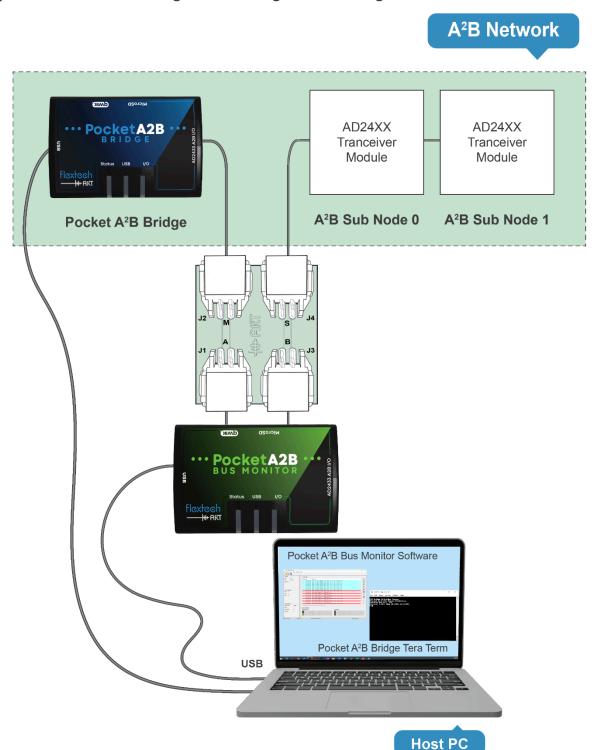
Position 2 Connection Setup:

- 1. Connect the **B-side** of the upstream node (or A²B Pocket Bridge) to the **A-side** of the Bus Monitor.
- 2. Connect the **B-side** of the Bus Monitor to the **A-side** of the downstream Sub node.

General Notes

NOTE: If you are using the Flextech AKT Pocket Bridge as a Main node, and Analog Devices evaluation boards as Sub nodes, use the supplied DuraClik crossover board to insert the bus monitor between nodes. Connect the Bus Monitor "A" and "B" to the crossover headers labeled "A" and "B". Connect the upstream node to the "M" header and downstream node to the "S" header.

NOTE: For A2B 1.0 networks, if the I/O LED illuminates Red (Bias Reversed), but the bus discovers normally, swap the A-Side and B-Side connections if using the DuraClik crossover board. Reverse the polarity of both the A-Side and B-Side if using custom cables.


NOTE: For A2B 1.0 networks, If the I/O LED illuminates Red (Bias Reversed), and bus discovery fails, reverse the polarity of only the A-Side.

Constructing a Test Network (optional)

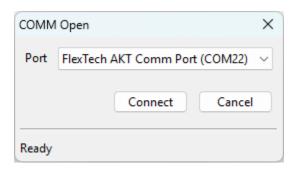
Consider using a Pocket A²B Bridge as the Main node and an <u>Analog Devices evaluation board</u> as a Sub node to quickly test the Pocket Bus Monitor.

NOTE: Use of the Pocket A²B Bridge is not a requirement. For further instructions on setting up the A²B networking using the Pocket A²B Bridge, see the Pocket A²B Bridge User Guide.

Example Test Network Configuration using Pocket Bridge and Pocket Bus Monitor:

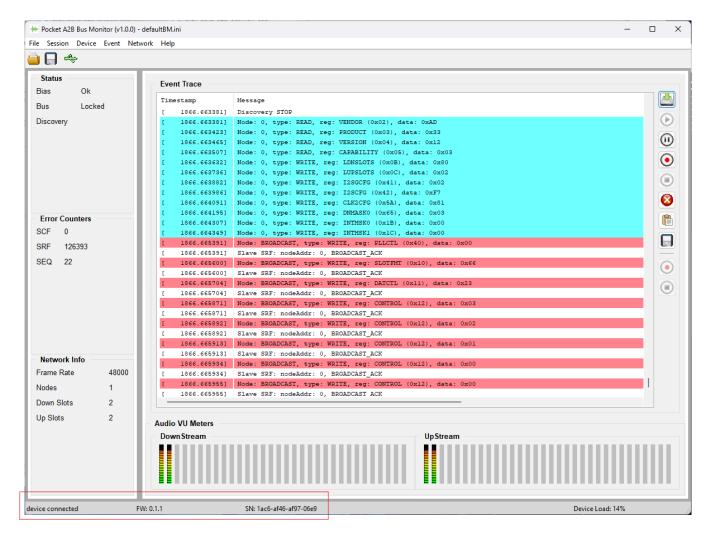
Connecting the Bus Monitor to your Host PC

Prerequisites


- A dedicated High Speed USB 2.0 or faster USB port for the Bus Monitor.
- AKT Pocket A²B Bus Monitor GUI installed.

Steps to Connect

- 1. Connect the supplied USB cable from the Bus Monitor to the host PC USB port.
- 2. Start the Pocket A²B Bus Monitor GUI on the host PC.



3. On the main ribbon bar click the USB icon to connect to the Pocket A²B Bus Monitor. Select the FlexTech AKT Comm Port assigned to Bus Monitor.

NOTE: All FlexTech AKT equipment has a FlexTech AKT Comm Port. If more than one FlexTech AKT device is plugged in, and the Device Status does not show connected after clicking Connect, select a different comm port.

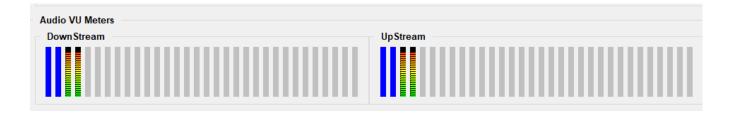
When the connection is established, the **status bar** at the bottom of the GUI window **displays the device's firmware version and serial number**.

At this point, the A²B Bus Monitor is ready to start monitoring A²B bus activity as shown above.

Enabling Audio and Data capture

A2B 1.0

Normal control data, like register and peripheral I²C accesses can be captured at all times


The Main node must properly configure the DATCTL register the Bus Monitor to capture audio or SPI over distance data from an A²B 1.0 network.

If the DATCTL register is *not* properly configured, the Bus Monitor cannot capture audio or SPI data, and all Audio Slot VU Meters will be grayed out.

The A²B Main node must set bit 5 (0x20, ENDSNIFF) to 1 to enable audio data sniffing by the A²B Bus Monitor. Setting this bit automatically triggers the Main node to broadcast the setting to any attached bus monitor.

The ENDSNIFF bit should be set during discovery and sent periodically throughout the life cycle of the A²B network. As soon as the Bus Monitor sees the ENDSNIFF bit, it will start capturing audio data. For more information, refer to the *Bus Monitor Support* section in the <u>AD2428 Technical Reference Manual</u>.

Audio slots reserved for SPI over distance are indicated in BLUE.

A2B 2.0

By default, A²B 2.0 Bus Monitors cannot access any data on the A²B network.

To monitor basic control data, like register and peripheral I²C accesses, the Main node must configure the **FB_PRCL_LOCK** register on the Bus Monitor immediately after the Bus Monitor node is discovered.

To access flexible payload data, the Main node must configure the **FB_QUAD_LOCK** register on the Bus Monitor immediately after the Bus Monitor node is discovered.

Both of these registers must be written by the software controlling discovery on the Main node.

A²B Audio Slot Mapping

A2B 1.0

Downstream and upstream A²B 1.0 audio slots are captured by the Bus Monitor in the order in which they appear on the network.

A2B 2.0

Downstream and upstream A^2B 2.0 audio data are captured by the Bus Monitor in network byte order. For both downstream and upstream audio, the first capture slot contains data at the lowest byte offset, the second slot contains data at the next lowest byte offset, and so on.

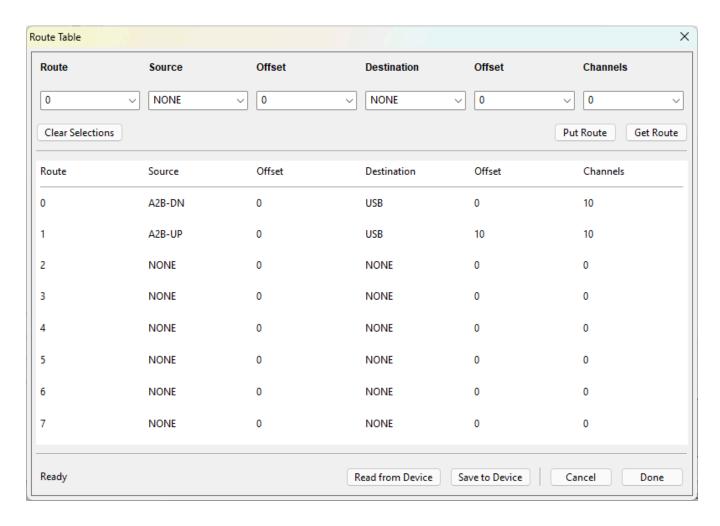
Starting a Capture

Prior to A²B discovery you should have already:

- Inserted the Bus Monitor into your A²B network.
- Launched the GUI on the host PC and connected to the Bus Monitor.

The Bus Monitor **immediately starts capturing data** from the A²B network as soon as it locks onto the bus during discovery. The Bus Monitor continues to capture all enabled I²C, SPI, and audio data at its position in the network after discovery.

Routing Audio from A²B to USB


This section demonstrates how to route audio from A²B to USB using the GUI. A more detailed explanation of the audio routing engine can be found in the <u>Audio Routing</u> section.

Routing Audio Using the Bus Monitor GUI

- Navigate to the Bus Monitor GUI top menu
- Select Device
- Select Edit Routing Table from the drop down menu

Routing Table

This example below configures a variety of routes to illustrate the flexibility of the routing engine.

To configure additional routes, select the Route number, Source + Offset, Destination + Offset, and Channels in the upper section of the dialog box and press the **Put Route** button.

To edit an existing route, select the Route number and press the **Get Route** button.

To quickly clear the Route selections, press the **Clear Selections** button.

To update the active routes in the A²B Bus Monitor, press **Save to Device**.

To read active routes from the A²B Bus Monitor, press **Read from Device**.

To discard changes, press Cancel.

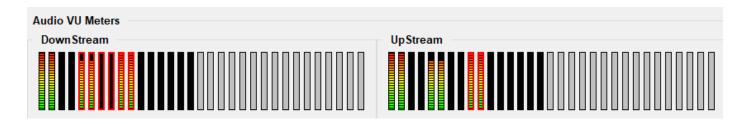
To store changes in the current session press **Done**.

Recording Audio

Bus Monitor GUI

The Bus Monitor GUI can record multi-channel audio routed to USB.

The main ribbon bar tools shown below and the "Audio" menu options control the recording


The tools from left to right are "Select Audio Device", "Set WAV File Name", "Record Audio", "Pause Recording" and "Stop Recording". To record audio:

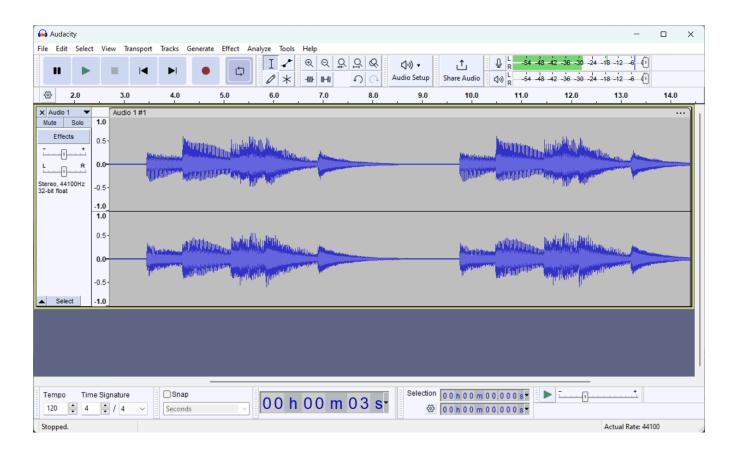
- 1. Connect to the Bus Monitor.
- 2. Configure the Audio Routing Table to route the desired A2B slots to USB
- 3. Press "Select Audio Device" and select the Pocket A2B Bus Monitor sound card
- 4. Press "Set WAV File Name" to select the WAV file
- 5. Press the "Record Audio" button to start recording
- 6. Press the "Pause Recording" button to pause recording
- 7. Press the "Stop Recording" button to stop recording

The GUI uses the routing table to determine which A²B slots to record. Channels recorded in the WAV file will start at the first routed USB channel and end at the last routed USB channel. Any empty USB channels in between the first and last routed USB channels will also be recorded. For example, the following routes will record six downstream A²B slots and two upstream A²B slots for a total of 8 channels of audio:

Route	Source	Offset	Destination	Offset	Channels
0	A2B-DN	4	USB	0	6
1	A2B-UP	8	USB	6	2

The GUI highlights the VU meters of the A²B slots being recorded while a recording is active.

NOTE: The Bus Monitor GUI will automatically stop recording once the 4GB WAV file size limit has been reached.


NOTE: Do not confuse WAV route destinations with the Bus Monitor GUI WAV recording. The Bus Monitor GUI records audio from routes with a USB destination. The WAV route destination is for recording directly to the Pocket Bus Monitor's SD card and used for autonomous mode audio recording.

Digital Audio Workstation

After A²B audio slots are routed to USB **you can use a Digital Audio Workstation (DAW) software,** such as Audacity, Reaper, and more to capture, record, analyze and playback the A²B audio channels.

Audacity is a free Audio Workstation program. <u>Click here to access the latest version and user guide.</u>

Example of Audacity recording the two A2B-DN channels that were routed to USB in the previous section, <u>Audio Routing in the Bus Monitor GUI.</u> In the Audio Setup, select the Microphone (Flextech AKT Bus Monitor) as the recording device.

Listening to Audio

To listen directly to USB audio from the A²B Bus Monitor on Windows, do the following.

- 1. "Navigate to Control Panel -> Hardware and Sound -> Sound" or search and launch "mmsys.cpl" on Windows 11.
- 2. Select the "Recording" tab and locate the Pocket A²B Bus Monitor
- 3. Select the Pocket A²B Bus Monitor then click Properties
- 4. Select the "Listen" tab and check "Listen to this device"

A short YouTube video demonstrating this process can be found here.

Recording a Trace

Recording an Event Trace

All control data flowing on the bus, including I²C and SPI, can be recorded to a file.

The buttons for recording control data are located on the right side of the event trace window.

You can:

- Start, stop, and pause recordings.
- Save the current contents of the event trace pane to a file OR
- Select a range of events from the pane and copy them to the clipboard.

Captures can span multiple discoveries. For example, you could click **Record**, then run a discovery, reset the network and run another discovery, and data for both discoveries will be captured.

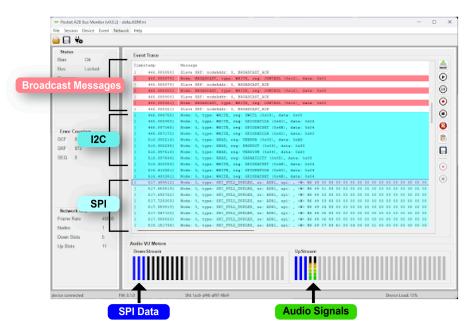
Importing a Trace

Importing an Event Trace

Saved event traces can be imported back into the Bus Monitor GUI for offline display or plugin processing. Supported formats are Flextech AKT .txt format and Mentor / Siemens .etf format. Use the "Import Event Trace" button or the "Event -> Import Event Trace" menu.

Reading an Event Trace

Events are color-coded to make reading and interpreting traces easier. All events with a background color are I²C or SPI transactions.


- Each node is individually color coded.
- A dark shade indicates an A²B transceiver register read or write.
- A light shade indicates a Sub node peripheral read or write. The following table shows how nodes are mapped to colors:

Node	Color
Node 1	Green
Node 2	Blue
Node 3	Orange
Node 4	Turquoise
Node 5	Purple
Node 6	Cyan
Node 7	Brown
Node 8	Red-orange
Node 9	Yellow

Additional Colors:

Salmon	Events with a salmon color background indicate A ² B broadcast messages.	
White	Events with a white color background indicate other bus events, such as bus lock status, bus bias status, discovery mode start/stop, and so on.	

Example Event Trace with I²C and SPI Peripheral Transactions

I²C Transactions

I²C transactions have the following fields:

- [seconds.microseconds] Event timestamp in microseconds.
- Node Node position
- type I²C transaction type.
- addr Address of the target register or peripheral I²C address.
- i2c Details about the I²C transaction. The following codes are used:
 - <S> Start condition
 - <P> Stop condition
 - <Sr> Repeat Start condition
 - <R> Read
 - <W> Write
 - <?> Unknown
 - <E> Error

I²C timestamps are relative to the beginning of the transaction.

SPI Transactions

SPI transactions have the following fields:

- [seconds.microseconds] Event timestamp in microseconds
- Node Node position
- type SPI transaction type.
- ss SPI Slave select.
- spi Details about the SPI transaction. The following codes are used:
 - <W> Write data
 - <R> Read data

SPI timestamps are relative to the beginning of the transaction.

NOTE: Some events are longer than what can be displayed in the event window. Right click on the event of interest to show the full content.

Using the Pocket Bus Monitor Command Line

In addition to the Bus Monitor GUI, the Bus Monitor has a command line interface for setup and monitoring.

Download and Install a Terminal Emulator Utility (Tera Term)

To access the command line interface, you must install a terminal emulator such as Tera Term, Putty, GTKTerm, or screen.

Tera Term under Windows is recommended because it has built in support for X/YMODEM that can be used to transfer files over USB.

Click Here to Access the latest version of Tera Term

Hookup

To access the command line, disconnect the GUI from the serial port and start a terminal emulator on the "FlexTech AKT Comm Port" USB UART. Since this is a virtualized USB serial port, the terminal settings are not critical, but suggested to be 115200 Baud, No parity, 8 data bits, 1 stop bit (115200,N,8,1).

Once connected, press <ENTER> a few of times until a '#' prompt appears. Type 'ver' and press <ENTER>.

A welcome/version message similar to the following will be displayed:

NOTE: The Bus Monitor GUI communicates with the A²B Bus Monitor through the same serial port as the command line. Therefore, the GUI and command line cannot be used at the same time.

Using the Command Line

The A²B Bus Monitor has a number of useful commands for setup, debug, automation, and maintenance activities.

Type 'help' at the command prompt to see the full list of available commands. Additional help specific to each command can be accessed by typing 'help <command>'.

There are many commands available on the A²B Bus Monitor so the contents of the 'help' command varies depending on the Command Level.

- Command Level 0 Available at startup and only shows the most common commands.
- Command Levels 1 and 2 Display additional system maintenance and troubleshooting commands.

NOTE: All commands can be run at all levels to facilitate scripting. Only the help is filtered by the command level.

Use the 'shell' command to change command levels. For example to switch to command level 2, enter the following command:

shell level 2

General Commands

Command	Purpose	
edit	Simple text editor that can be used to modify small text files directly on the A ² B Bus Monitor.	
hwid	Show device HW ID	
reset	Resets system components. A "soft" returns the A ² B Bus Monitor to its power on reset state.	
resize	Resize or Sync the terminal window size. Run this command after the Tera Term command window is resized to synchronize the new terminal size or specify a size to resize the terminal window.	
ver	Show version information	
help	Shows specific help for commands	

For additional help on any command use the built-in help command:

```
# help help
help - shell help
Usage: help [<command>]
  [<command>] - the command to get help on.
Without arguments it shows a summary of all the shell commands.
```

File Management

It is often necessary to install files onto the A²B Bus Monitor to enable automation features. The most direct method is to simply copy files to or from a PC on the SD card. The SD card can be safely removed and reinstalled when not in use.

NOTE: Always remember to eject the card from the PC prior to removing it.

In addition to the SD card, the A²B Bus Monitor has a small internal "Flash" file system. This file system is meant for system files that must be maintained even when the SD card is ejected and for files used early at startup. Such files include:

File	Purpose
XXXX-XXXX-XXXX.key	This file is the product activation key and required for proper operation. Never modify or erase this file. It is recommended to make a backup of this file and store it somewhere safe.
shell.cmd	Commands in this file are automatically run at system startup.
cfg.ini	Accessed early in the boot process to override system defaults such as USB audio channels or Ethernet settings.

Wherever file names are mentioned in this document, prefix the actual file name with 'sf:' to access files on the internal Flash file system or 'sd:' to access files on the SD card. File names with no prefix will default to the SD card.

NOTE: The maximum file name length on the internal Flash filesystem is 30 characters

File Commands

The following commands are available on the A²B Bus Monitor for manipulating files. Type 'help <md>' on the command line for detailed usage instructions.

Command	Purpose
cat	Show the contents of a text file. Do not use this command with binary files. Use the 'dump' command to display binary files.
cp / copy	Copy a file
df	Show the drive full status
drive	Show or set the default drive
dump	Show the contents of a file in hex
format	Format a drive.
	WARNING: Formatting the internal flash file system will erase the activation key rendering the A ² B Bus Monitor inoperable. It should never be necessary to format the internal sf: filesystem.
fsck	Check the integrity of a drive
edit	Edit a text file
ls / dir	Show a directory listing of a drive
recv	Receive a file via XMODEM. If no file name is given, receive multiple files via YMODEM.
send	Sends one or more files via YMODEM
rm / del	Delete a file
run	Run a command script
tail	Show the last <n> lines of a text file</n>

File Transfers

The A²B Bus Monitor supports a variety of methods to transfer or create files for system setup.

SDCARD

The most direct method is to simply copy files to or from a PC using the SD card. The SD card can be freely removed and reinstalled in the A²B Bus Monitor when not in use.

NOTE: Always remember to eject the card from the PC prior to removing it.

Edit Command

Simple text files can be created or modified directly from the command line using the 'edit' command. Press <CTRL-S> to save the file. Press <CTRL-Q> to quit editing.

X/YMODEM

Files can be downloaded to the A²B Bus Monitor using the XMODEM or YMODEM protocols via the 'recv' command. XMODEM is used to transfer a single file and used when a file name is provided. YMODEM is used to transfer multiple files when no file name is specified.

TeraTerm supports both XMODEM and YMODEM file transfer protocols. After issuing the 'recv' command, select File -> Transfer -> [X][Y]MODEM -> Send to initiate a transfer.

Files can be uploaded from the A²B Bus Monitor using the YMODEM protocol via the 'send' command. Multiple files can be sent in a single transfer.

Select the 1k file transfer option for faster transfers.

Changing Default System Settings

A number of default system settings can be modified through the sf:cfg.ini configuration file.

To modify the default values, create a text file called cfg.ini containing content from the sections below.

Copy this file onto the SD card, insert the SD card into the A²B Bus Monitor, then copy the file from the SD card to the internal flash filesystem with the following command:

```
cp cfg.ini sf:cfg.ini
```

The sf:cfg.ini file can also be created or modified directly on the A²B Bus Monitor using the 'edit' command.

NOTE: Be very careful when configuring this file. Incorrect settings can result in a boot failure that may require a Safe-Boot Recovery of the A²B Bus Monitor.

System Sample Rate Re-Configuration

The default sample rate of the A²B Bus Monitor is 48 kHz. This sample rate is reported to the host PC when the USB Sound card is enumerated. If the A²B network being monitored is 44.1 kHz, then the sample rate reported to the host must be set to match.

To modify the system sample rate in the cfg.ini file, add a [system] section to it. The example below sets the system sample rate to 44.1 kHz.

```
[system]
sample-rate = 44100
```

For Windows 10/11, you must uninstall the existing A²B Bus Monitor audio driver in the Device Manager after changing any of the USB audio settings. See the <u>USB Sound Card Re-Configuration</u> section for details.

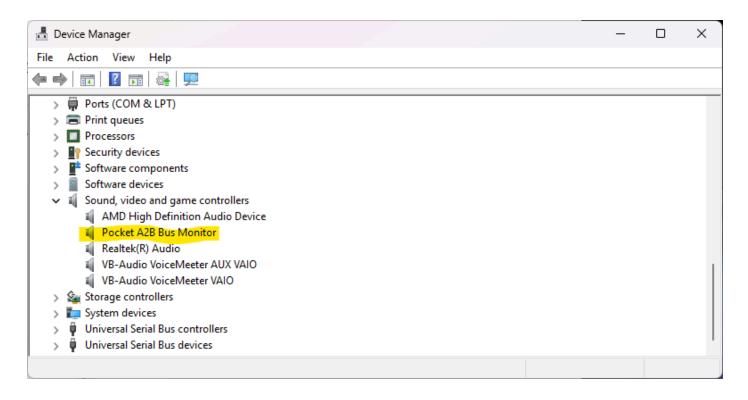
NOTE: The A²B Bus Monitor automatically determines the sample rate of the A²B bus being monitored. It is only necessary to set the system sample rate if audio is being recorded over USB through the Bus Monitor GUI or similar recording software.

USB Sound Card Re-Configuration

By default the A²B Bus Monitor is configured as a 20 Digital IN x 16 bit USB sound card.

To modify the sound card settings in the cfg.ini file, add a [usb-audio] section to it.

```
[usb-audio]
in-channels = <2-32 channels>
word-size-bits = <16 or 32>
```


Set the values as required for the application. The example below configures 2 IN channels (from the A²B Bus Monitor to the PC) with a bit-depth of 16-bits:

```
[usb-audio]
in-channels = 2
word-size-bits = 16
```

The USB product string can be overridden by setting a 'product-string' in the [usb-audio] section.

For Windows 10/11, you must uninstall the existing A²B Bus Monitor audio driver in the Device Manager after changing any of the USB audio settings.

With the A²B Bus Monitor powered and connected, right click on the "A²B Bus Monitor" sound card and select uninstall:

Reset the A²B Bus Monitor and Windows will apply the new settings.

NOTE: Do not set the number of channels or bit-depth higher than required by the application. Unused channels still consume CPU cycles on the A²B Bus Monitor and USB bandwidth on the PC.

NOTE: Do not set the number of channels to zero. A minimum of one channel must be defined in the IN direction.

Bus Monitor Commands

Most common bus monitor activities are supported directly on the command line. Below are commands specific to bus monitoring.

Command	Purpose	
bm	Display A ² B bus control traffic. The output of this command mirror the Event Trace in GUI. Press any key to exit the command.	
bmm	Set the A ² B 1.0 bus monitor mode. Used to configure and connect to a live A ² B bus. See Connecting to a live A2B Bus. This command is only available on A ² B 1.0 Bus Monitors.	
bmspi	Save captured A ² B SPI over distance data to a file	
bmspidump	Dumps A ² B SPI over distance data from a captured file	

Connecting to a live A²B 1.0 Bus

NOTE: This section only applies to A²B 1.0 networks. A²B 2.0 networks require the Bus Monitor be present on the network during bus discovery.

The A²B Bus Monitor normally configures itself by monitoring the A²B discovery process. During discovery, the A²B Bus Monitor synchronizes a number of internal settings with those of the next downstream node.

The following process can be used to monitor an A²B bus when the A²B Bus Monitor is connected after discovery. This mode is called "no discovery" mode.

Step 1: Discover the A²B network with the Bus Monitor Attached

Begin by monitoring a normal A²B discovery to allow the A²B Bus Monitor to acquire the A²B network configuration.

Step 2: Dump the settings to a file

After discovery, issue the 'bmm dump <file>' command where <file> is the name of a file to dump the settings. This command will create a simple command script that can be used to configure the A²B Bus Monitor for "no discovery" monitoring. Use the 'cat <file>' command to view the contents of the file.

NOTE: The settings depend heavily on the A^2B bus configuration and where the A^2B Bus Monitor is positioned on the bus. If the network configuration changes, or the A^2B Bus Monitor is moved to a new position, this step will need to be repeated. Any number of setting dumps can be stored on the A^2B Bus Monitor to allow easy attachment to any number of A^2B networks or positions.

Step 3: Connect to a live bus

After powering up or connecting the A²B Bus Monitor to a live bus, issue the following sequence of commands from the command line. If progressing from Step 2, issue the 'reset' command to reset the A²B Bus Monitor.

Seq	Command	Action		
1	run <file></file>	Run the command script created in Step 2 to load the A ² B configuration settings		
2	bmm nodiscover	Places the A ² B Bus Monitor in "no discover" mode		
3	bmm connect	Electrically connect to the A ² B bus		
4	delay 100	Delay to allow the A ² B Bus Monitor to lock to the bus		
5	bmm configure	Apply the A ² B bus configuration		

These commands can be combined into a single command script and executed using the 'run' command.

Step 4: Begin monitoring

After Step 3 the I/O LED should be a steady green and the A²B bus can be monitored as usual. To monitor audio or SPI data, the A²B Bus Monitor must see a broadcast write of the DATCTL (0x12) register with the ENDSNIFF (0x20) bit set.

To monitor with the GUI, disconnect the terminal from the serial port and use the GUI as usual.

From the command line, use the 'bm' command for command line monitoring of control traffic and the 'route' command to route audio from A²B. The 'bmspi' command can be used to save high bandwidth SPI data to the SD card. The 'bmspidump' command can be used to dump the SPI data stored in the file to the terminal.

The A²B Bus Monitor will automatically exit "no discovery" and return to normal mode when it detects a new A²B discovery.

NOTE: Do not disconnect or break the network when attaching the Bus Monitor to a live A²B Bus. The A²B Bus Monitor should have been wired into the network prior to connecting. While it is possible to "tap" onto a live network, the act of physically attaching the A²B Bus Monitor to the A²B bus might disrupt the A²B bus or introduce errors. If tapping onto the bus is the only option, make the stub length as short as physically possible. Attach either the "A" or "B" side of the Bus Monitor to the A²B bus being sure to maintain proper polarity.

Qwiic Peripheral Configuration

Qwiic peripheral configuration via I²C on the qwiic connector is supported through the command line and AKT Automation scripts.

I²C Commands

Command	Purpose		
qwiic_i2c	Performs an I ² C write, read, or write/read transaction on the qwiic connector		
qwiic_scan	Scans the I ² C bus on the qwiic connector for active devices		

NOTE: The I²C bus speed is fixed at 400KHz

Qwiic Examples

Scan the qwiic connector for I²C devices

```
# qwiic_scan
Probing I2C port 2:
Found device 0x68
```

1 byte write / 16 byte read I²C transaction to device 0x68 on the qwiic connector

```
# qwiic_i2c 0x68 "0" 16
I2C Device 0x68, Read Bytes 16 (0x10)
00000000: 34 07 20 02 06 11 24 00 00 00 00 00 00 1c 88
```

Audio

General

The A²B Bus Monitor processes audio in blocks of 128 samples. Latency through the A²B Bus Monitor for all sources and destinations, except for USB, is 2.67uS. USB audio latency is approximately 960 samples, or 20mS. Latency through USB is generally controlled to within +/- 10 samples of nominal.

Internal audio samples are all 32-bits wide. Audio is up / down converted as required to 32-bits from 16-bit sources / destinations. Samples down-converted from 32-bit to 16-bit are truncated.

All audio within the A²B Bus Monitor is fundamentally clocked by the A²B bus. Audio does not flow through the A²B Bus Monitor when the A²B bus is idle.

Audio routing is "bit perfect" from source to destination.

A^2B

All A²B audio is 32-bits regardless of the A²B network settings. The A²B Bus Monitor can capture the first 30 slots of both upstream and downstream audio for a total of 60 slots.

USB Audio

By default the A²B Bus Monitor supports 20 IN (to PC), 20 OUT (from PC), by 16-bit audio. These settings can be modified by the cfg.ini file as necessary. The 'usb' command can be used to view USB audio statistics.

View the audio statistics during long-term USB audio recording or playback when testing is sensitive to gaps in audio. Windows 10/11 are not real-time operating systems and can fail to transfer USB audio in a timely manner during periods of high system load.

To listen directly to USB audio from the A²B Bus Monitor on Windows, do the following.

- "Navigate to Control Panel -> Hardware and Sound -> Sound" or search and launch "mmsys.cpl" on Windows 11.
- 2. Select the "Recording" tab and locate the Pocket A²B Bus Monitor
- 3. Select the Pocket A²B Bus Monitor then click Properties
- 4. Select the "Listen" tab and check "Listen to this device"

A short YouTube video demonstrating this process can be found here.

WAV Files

The A²B Bus Monitor can play and record 16-bit or 32-bit multi-channel WAV files. WAV files up to thirty two 32-bit channels are supported assuming the SD card has sufficient bandwidth. Use the 'sdtest' command to confirm SD card bandwidth.

A single WAV file can be the source or destination of multiple routes. If an audio route (offset plus channels) extends beyond the number of channels available in a WAV file destination the extra channels are dropped. Empty WAV destination channels are zero filled. If a route extends beyond the channels available in a WAV file source, the missing channels are zero-filled.

Use the 'wav' command to start and stop WAV file playback or recording.

NOTE: Always use a minimum <u>Class 10 or UHS Class 1 SD card</u> if the card will be used for WAV file audio. Use a <u>freshly formatted SD card</u> when recording high bit-rate WAV files to reduce the risk of audio drops. Use the <u>'sdtest'</u> command to confirm acceptable SD card bandwidth.

Circular Audio Buffer (CBUF)

The A²B Bus Monitor has a programmable circular memory buffer (CBUF) that can be used to record a rolling window of audio. The audio inside the CBUF can be dumped to a WAV file on the SD card at any time. This feature can be used to capture transient audio events without having to record a continuous audio WAV file.

Use the 'cbuf' command to configure and control the CBUF.

VU Meters

The A²B Bus Monitor has a set of simple built in VU meters. The VU meters are very useful for locating audio on A²B. Any captured upstream or downstream A²B slot can be routed to the VU meters.

VU meters can be the destination of multiple routes.

Use the 'vu' command to view the VU meters.

NOTE: There is a known issue where the VU meter screen is blank with TeraTerm version 5. TeraTerm Version <u>4.108</u> is recommended. The rendering character for the VU meters can also be set to a '*' with the following command 'vu 32 *'.

ASIO

The A²B Bridge supports ASIO on Windows through the FlexASIO driver. Please refer to the <u>FlexASIO</u> <u>Github</u> page for more information.

Audio Routing

The 'route' command is the key command for transferring audio between audio streams on the A²B Bus Monitor. The A²B Bus Monitor supports up to eight simultaneous multi-channel routes enabling very sophisticated audio routing schemes. The routing engine is a full crossbar between any source and any destination.

The table below describes the routing capabilities of the A²B Bus Monitor

Stream	Src / Dest	Notes
usb	Dest	
a2b-dn	Src	
a2b-up	Src	
wav	Both	
cbuf	Dest	
vu	Dest	

An audio route starts with a source stream. The source stream is the base stream, like 'a2b-dn' or 'a2b-up'.

A specific channel within a source stream is identified with the source channel offset. For A²B the source channel offset refers directly to the A²B bus audio slot. For other streams, the offset refers to the channel offset.

The route source must then connect to a destination. Destination streams are identified by stream and channel offset exactly like source streams.

A route copies a defined number of channels from the source to the destination. Audio can be optionally attenuated and mixed during this copy.

Route command arguments are:

```
route [ <idx> <src> <src offset> <dst> <dst offset> <channels> [attenuation] [mix|set] ]
```

Below are some examples:

Route the first 2 slots from A²B downstream to USB with no attenuation

```
route 0 a2b-dn 0 usb 0 2
```

Route the first two slots from A²B upstream to USB with a channel offset of 2

```
route 1 a2b-up 6 usb 2 2
```

Route 16 channels from both a2b-dn and a2b-up to the VU meters to find active slots

```
route 16 a2b-dn 0 vu 0 0 16
route 16 a2b-up 0 vu 0 16 16
```

A route that exceeds the number of source channels (i.e. source offset + channels > source channels) will zero fill the missing channels. Routes that exceed the number of destination channels (destination offset + channels > destination channels) will terminate after the last destination channel.

NOTE: A²B SPI over distance slots are routed just like audio slots.

Peak Detectors

The A²B Bus Monitor supports real-time peak detectors on all captured upstream and downstream slots. These peak detectors continuously monitor A²B audio. The peak detectors also indicate SPI data slots with the words 'Active' and 'Idle'. The peak detectors can be viewed or cleared using the 'peaks' command.

Command Scripts

Any series of commands can be grouped together into a command script and executed using the 'run' command. Command scripts are simple text files containing one command per line. Lines starting with a semicolon or hash mark are ignored and treated as comments. Any valid file name can be used for command scripts.

Some commands are especially useful in command script processing

Command	Purpose
delay	Delays script execution for a specified number of milliseconds
echo	Displays a line of text
shell redirect	Silences or redirects output of a script to the syslog
reset	Reset various subsystems to power on reset values. No arguments performs a full hardware reset.

Be careful scripting interactive commands as the script will not proceed until the interactive command has completed. Interactive commands include 'syslog', 'vu', and interactive 'lua' scripts.

Below is an example command script that captures 8 slots of downstream and 8 slots of upstream A2B audio to a 16 channel WAV file for 5 seconds.

```
# Perform a soft reset
reset soft
# Route 8 slots of downstream audio to a WAV file
route 0 a2b-dn 0 wav 0 8
# Also route 8 slots of upstream audio to the WAV file
route 1 a2b-up 0 wav 8 8
# Start a 16 channel WAV file recording
wav sink on sink.wav 16
# Delay 5 seconds
delay 5000
# Stop recording
wav sink off
```

Running commands at startup

If present, the A²B Bus Monitor runs 'sf:shell.cmd' at startup. This feature allows for autonomous configuration of the A²B Bus Monitor at startup.

NOTE: The SD card takes some time after startup to initialize. Be sure to add a delay of at least 1 second at the beginning of any startup script that uses files on the SD card.

NOTE: Be careful including interactive commands in the startup script. For example, launching a Lua script that never terminates will lock out the command line requiring a Safe Boot Recovery to correct.

AKT Automation with Lua

Fully autonomous operation on the A²B Bus Monitor is made possible through the on-board Lua based AKT Automation environment. This feature is an optional add-on for the Pocket A²B Bus Monitor.

Lua is a fully-featured open source scripting language. More information on Lua, including programmer reference manuals, can be found at https://lua.org/.

The pairing of Lua with the A²B Bus Monitor command and control APIs results in an extremely rich interactive A²B automation environment.

User interfaces can be created using the 'term' module. Low-level operations are possible using the 'rtos' and 'system' modules. Qwiic compatible peripherals, such as RTCs, displays, pushbuttons, etc., are accessible via the 'qwiic' module.

A full complement of A²B bus monitor events are available through the 'bm' module.

For more detailed information on the API, refer to the FlexTech AKT Automation API Guide.

Example AKT Automation scripts can be found in the **AKT-Automation** repository on Github.

When developing Lua scripts, the following techniques can speed up script development:

- 1. Use XMODEM to transfer scripts to the A²B Bus Monitor instead of the SD card
- 2. Running Lua with no arguments starts an interactive Lua interpreter. Lua code "chunks" can be copied and pasted from the PC into the interpreter for quick prototyping of logic or code blocks.
- 3. Use the on-board 'edit' command for quick bug fixes or script modifications.

Bus Monitor GUI Plugins

Event processing by the Bus Monitor GUI can be extended through the use of Plugins. Like the Flextech AKT Automation environment, the Bus Monitor GUI plugin environment is based on the <u>Lua programming</u> <u>language</u>. A series of pre-defined Lua methods, callbacks, and constants allow plugins to process A²B events received by the Bus Monitor GUI and output color coded text to the main Event Trace window or dedicated plugin event and debug windows.

Plugins can be loaded, reloaded, unloaded, started and stopped at any time through the "Plugin" menu.

Plugins can access third party Lua Modules such as those provided by the <u>Penlight Lua Library</u> and many others. The Plugin path is included in the default Lua module search path. Third party modules should be placed in the same folder as the Plugin.

Bus Monitor GUI Plugins can be found in the **AKT-Automation** repository on Github.

The script below demonstrates a minimal Bus Monitor GUI plugin. This Plugin echoes all events back to the Event Trace window in purple. The script requires the Penlight Lua Library. Place the Penlight 'pl' folder in the same folder as the Plugin.

```
pretty = require('pl.pretty')
PURPLE = \{177, 156, 217\}
-- Bus Monitor GUI plugin functions
function plugin loaded()
   plugin_trace(0, 'Plugin Loaded')
end
function plugin unloaded()
  plugin trace(0, 'Plugin Unloaded')
end
function plugin stop()
  plugin_trace(0, 'Plugin Stop')
function plugin start()
  plugin trace(0, 'Plugin Start')
function plugin event(e)
   e.event = BM EVENTS[e.event] or e.event
   plugin trace(e.timeStamp, pretty.write(e, ''), PURPLE)
end
```

Plugins can be developed within the GUI or outside of it. When developing within the GUI, use the Reload menu option to iteratively reload the current Plugin. Parsing and loading errors are output to the Event Trace window.

When developing outside of the GUI, use the BM_GUI_PLUGIN global variable to enable standalone code or create a Plugin compatible environment.

A standalone example that creates a Plugin compatible environment and parses register reads and writes from an Event Trace dump can be found in the <u>AKT-Automation</u> repository on GitHub in the examples/bm gui plugin/standalone folder.

Pre-defined Constants

The following constants are provided in the Lua environment by the Bus Monitor GUI

Name	Туре	Notes		
BM_EVENTS	Table	Event table. Use this table to map event identifiers to or from readable strings.		
BM_I2C_TYPES	Table	I2C event type table. Use this table to map A ² B I2C event type identifiers to or from readable strings.		
BM_I2C_CONDITIONS	Table	I2C peripheral condition table. Use this table to map A ² B I2C peripheral condition identifiers to or from readable strings.		
BM_I2C_SRC	Table	I2C Source peripheral (A2B 2.0 only)		
BM_GUI_PLUGIN	Boolean	This constant is set to true when the plugin is running within the Flextech Bus Monitor GUI environment.		

Pre-defined Callbacks

plugin trace()

ok = plugin trace(timestamp, text [,color])

Output text to the Bus Monitor GUI Event Trace window.

NOTE: The Event Trace window is only active when the Bus Monitor GUI is attached to the Bus Monitor or while an event trace is being imported.

Parameters

Parameter	Туре	Optional	Description
timestamp	number	no	Event Trace timestamp in seconds. Normally the same as an associated event timestamp.

Parameter	Туре	Optional	Description
text	string	no	Event Trace text
color	table number	yes	Custom RGB values can be defined as a table { R, G, B } The standard node color will be used when 'color' is a node number.
			No color will be used when omitted

Return Values

Return	Туре	Optional	Description
ok	Boolean	N/A	True for success otherwise false

Required Plugin Methods

The following methods must be implemented within a Plugin for proper operation.

plugin_loaded()

plugin_unloaded()

Called when the plugin is loaded or unloaded

Parameters

Parameter	Туре	Optional	Description
N/A	N/A	N/A	This method has no parameters.

Return Values

Return	Туре	Optional	Description
N/A	N/A	N/A	This method has no return value.

plugin_start()

plugin_stop()

Called when the Bus Monitor GUI 'Plugin Start' or 'Plugin Stop' menu item is selected.

NOTE: The Bus Monitor GUI continues to send events regardless of the start / stop state. The Plugin is free to define the behavior of these states internally.

Parameters

Parameter	Туре	Optional	Description
N/A	N/A	N/A	This method has no parameters.

Return Values

Return	Туре	Optional	Description
N/A	N/A	N/A	This method has no return value.

plugin_event()

plugin_event(event)

Called when the Bus Monitor GUI has a new event to process

Parameters

Parameter	Туре	Optional	Description			
event	table	no				
			Parameter	Туре	Value	
			event	number	Event enumeration	
			timeStamp	number	Event timestamp	
			EVENT SPECIFIC		See BM_EVENTS	

Return Values

Return	Туре	Optional	Description
N/A	N/A	N/A	This method has no return value.

A2B Bus Monitor Plugin Enumerations and Events

BM_GUI_PLUGIN

This boolean is set to true when running in the Bus Monitor GUI plugin environment.

BM_I2C_TYPES

Name Value		Description
I2C_REG	0	Register transaction
I2C_PERIPHERAL	1	Peripheral transaction
I2C_PERIPHERAL_CONDITION	2	Peripheral condition

BM_I2C_CONDITIONS

Name	Value	Description
I2C_RPTSTART	0	start
I2C_RPTSTART	1	repeat start
I2C_ACK	2	ack
I2C_NACK	3	nack
I2C_NORMAL	4	data
I2C_STOP	5	stop
I2C_ERROR	6	error
I2C_UNKNOWN	7	unknown

BM_I2C_SRC (A2B 2.0 Only)

Name	Value	Description
PE	0	Protocol Engine
I2C	1	I2C
SPI0	2	SPI0
SPI1	3	SPI1
BSD	4	Bus Self Discovery

BM_EVENTS

Events containing "A2B2" are specific to A2B 2.0 networks.

Name	Value	Description							
12C	2	I2C register or peripheral eve	ent						
		Parameter	Туре	Value					
		tid	number	I2C transaction ID					
		type	number	I2C event type. See BM I2C TYPES.					
		nodeAddr	number	Sub node address					
		addr	number	Register or peripheral I2C address					
		rw	boolean	True for read, false for write					
		data	number	I2C data byte					
		condition	number	I2C peripheral condition. See BM I2C CONDITIONS					
SPI	3	SPI event	1	1					
		Parameter	Туре	Value					
		respNode	number	SPI node					
		error	boolean						
		type	string	SPI transaction type "ATOMIC_READ" "ATOMIC_WRITE" "FULL_DUPLEX" "BULK_WRITE"					
		ss	string	Slave select "ADR1" "SIO2" "ADR2"					
		wLen	number	Write data length					
		rLen	number	Read data length					
		wr	number array	Write data					
		rd	number array	Read data					
BUS_LOCK_LOCKED	4	Bus Locked event							
BUS_LOCK_UNLOCKED	5	Bus Unlocked event							

BIAS_OK_DETECTED	6	Bias OK detected e	vent						
BIAS_OK_REMOVED	7	Bias OK removed e	vent						
BIAS_REV_DETECTED	8	Bias Reverse detected event							
BIAS_REV_REMOVED	9	Bias Reverse removed event							
DISCOVERY_MODE	10	Discovery mode event							
		Parameter		Туре	ı	Value			
		status		string)	"START" "STOP"			
		respCycles		numb	per	Response cycle	s		
IRQ	11	IRQ event							
		Parameter		Туре		Value			
		nodeAddr		numb	per	Sub node addre			
		status		number		IRQ status			
DOWNSTREAM_SCF_ERROR UPSTREAM_SRF_ERROR	12 13	Downstream SCF 6	error event						
		Parameter		Туре		Value			
		type		string		"SCF" "SRF"			
		missed		number		Control frames missed in last block.			
		hdcnt		number		Headers missed in last block			
		crc		number		Bad CRCs in last block			
SLAVE_ERROR	14	Slave error / ack ev	ent						
		Parameter	Туре		Value				
		nodeAddr	numbe	r	Sub node address. F is zero.	First submode			
		error	numbe	r	Error number				
		errorStr	string		"SRFMISSED_ERRO "BROADCAST_ACK" "DISCOVERY_ERRO "DOWNSTREAM_CF "UNSPECIFIED_ERF	" DR" RC_ERROR"			
SEQUENCE_ERROR	15	Sequence error eve	ent						

			1
	Parameter	Туре	Value
	seq	Number	Sequence errors detected in last block
16	See I2C event for detail	ls. Additional fields for A2B	2.0 are
	Parameter	Туре	Value
	src	Number	I2C source. See BM_I2C_SRC
1,-			
17	Parameter	Туре	Value
	nodeAddr	Number	Node address
	bprio	Number	IRQ Priority
18	Parameter	Туре	Value
	nodeAddr	Number	Node address
	type	Number	IRQ Type
	active	Boolean	IRQ Active
	ack	Boolean	IRQ Ack
	invalid	Boolean	IRQ Invalid
40			
וש	Parameter	Туре	Value
	crc	Number	CRC errors
20	Parameter	Type	Value
		Number	CRC errors
	crc		
	16 17 18 20	seq 16 See I2C event for detail Parameter src 17 Parameter nodeAddr bprio 18 Parameter nodeAddr type active ack invalid 19 Parameter crc	seq Number See I2C event for details. Additional fields for A2B

Updating the Pocket Bus Monitor's Firmware

WARNING: Prior to updating the firmware, always be sure to disable any custom **cfg.ini** and **sf:shell.cmd** startup files. These may interfere with the proper startup of the new firmware causing the update to fail unexpectedly.

Download the AKT Flasher Utility from www.flextechakt.com and install.

Follow one of the methods below to update the Bus Monitor Firmware.

Methods to Update the Firmware

Command-line Initiated AKT Flasher Over USB.

To start this update, issue the following commands from the Tera Term command line:

```
# bootmode 1
# reset
```

Proceed to update with AKT Flasher utility. Once the 'reset' command is issued, the unit must be updated using the AKT Flasher.

Command-line via SD card file

To initiate this update, the desired firmware binary must be on the SD card. One can simply copy it from the PC or use the 'recv' command to transfer it through TeraTerm via XMODEM over USB.

Once the file is on the SD card, issue the following command:

```
# update <file>
```

Where <file> is the firmware binary. Reset the unit once the update is complete using the 'reset' command or cycling power.

Bootloader initiated AKT Flasher over USB

Press and hold the "Boot Recovery" button while powering on the unit. The unit will immediately enter the bootloader mode and can be updated using the AKT Flasher utility. If the unit is reset before updating the firmware, it will boot normally. Once an update is initiated with AKT Flasher, the update must complete.

Bootloader mode is indicated by a slow yellow blink of the Status LED on the Pocket products.

NOTE: The "Boot Recovery" button is located under the small hole on the underside of the Pocket A²B Bus Monitor.

Included Connectors

USB

The USB connector is a standard USB 2.0 Type B receptacle.

24 Pin Multi I/O Connector

JST S24B-PHDSS

Pin	1	3	5	7	9	11	13	15	17	19	21	23
Description	GND	GPIO0							A-	A+	B+	B-
Color	Black	Blue							Brown			Brown

Pin	2	4	6	8	10	12	14	16	18	20	22	24
Description	3.3V	GPIO0										
Color	Black	Purple										

Pin Diagram.

NOTE: Color shown match harness provided. Gray sections represent unused pins.

Bus Monitor Connections

The I/O Header on the Pocket Bus Monitor accepts the JST PHDR-24VS Socket Housing. <u>Click here for the full data sheet for the JST PHD connector series</u>.

Analog Devices Evaluation Platform Connectors

The A-side and B-side on most Analog Devices evaluation boards use Molex DuraClik connectors (Molex part number 502352-0200).

- When looking into the connectors on the evaluation platform, pin 1 is on the left side and pin 2 is on the right side.
- On the ADI evaluation boards, the polarity of the A²B signals is flipped between the A-side and the B-side.
- On the A-side, which faces the Main node, pin 1 is positive and pin 2 is negative.
- On the B-side, which faces the next Sub node, pin 1 is negative and pin 2 is positive.

After completing the steps in this procedure, you will have A-side and B-side cables that connect the Bus Monitor to an Analog Devices evaluation platform.

Fabricating Custom Cables

After completing the steps in this procedure, you will have A-side and B-side cables that connect the Pocket Bus Monitor to an Analog Devices evaluation platform.

You might need to craft your own custom cables to connect the Pocket Bus Monitor to your A²B network. This section describes how to fabricate A²B cables with plugs for the Pocket Bus Monitor on one side and connectors for Analog Devices evaluation platforms on the other.

NOTE: Adjust these instructions for interconnects used by your own hardware.

NOTE: When connecting the A-side or B-side of an A²B Pocket Bus Monitor to an ADI evaluation platform, you can start with the provided cable harness with DuraClik connectors.

Bill of Materials

Item	Qty	Mfg.	Mfg. P/N	Dist.	Dist. P/N
DuraClik plug	2	Molex	502351-0200	Mouser	538-502351-020
Duraclik Crimp Terminal	4	Molex	50212-8100	Mouser	538-50212-8100
Duraclik Crimp Tool	1	Molex	63823-5100	Mouser	538-63823-5100
JST Socket Housing	1	JST	JST PHDR-24VS	Digikey	455-1177-ND
JST Terminal	7	JST	SPHD-001T-P0.5	DigiKey	455-1325-1-ND
Alternate Crimp Tool		Engineer	PA-09	Amazon	PA-09
Wire, Brown, 24AWG		Any	UL1061 24AWG		
Wire, White, 24 AWG		Any	UL106124AWG		

Cable, 2 Cond, 24 AWG, Black	elden 1353A 010	DigiKey BEL1253-1000-ND	
---------------------------------	-----------------	-------------------------	--

Procedure

- 1. If using discrete wires, cut the white and brown wires to the desired length considering that the wires must be twisted pairs. If using the Belden cable, cut to the desired length. Ensure no copper is exposed while separating the conductors.
- 2. If using discrete wires for the A²B cables, twist the wires at 0.4 twist per cm or 1 twist per inch.
- 3. Strip and crimp DuraClik terminals onto one end of the wires or cable using a Molex compatible crimp tool.
- 4. Insert the terminals into the DuraClik plug, carefully noting the polarity of the cables and the placement of the conductors.
- 5. For the A-side cable, insert the white wire into pin 1 (left side) of the DuraClik plug. Insert brown wire into pin 2. For the B-side cable, insert the brown wire into pin 1 (left side) of the DuraClik plug. Insert the white wire into pin 2.
- 6. (Optional) Apply shrink tubing to dress the end of the cable.
- 7. Label your A-side and B-side cables.
- 8. Crimp JST terminals onto the opposite end using a JST compatible crimp tool.
- 9. Insert terminals into the JST plug, carefully selecting the terminal slots with polarity as shown in the JST 24 Pin I/O Header Pinout.
- 10. The following figure shows the finished cables.

Chapter 6. Specifications

-101||10|1

This chapter provides technical specifications for the Pocket A²B Bus Monitor.

Environmental

DC Characteristics

Target Power: USB +5V, 450mA max

GPIO Signal: 3.3V, 10 mA

Dimensions (W x D x L)

68 x 43 x 25 mm (2.7" x 1.8 x 1")

Weight

64 g (0.14 lbs)

Operating Temperature

0° C to 70° C (32° C to 158° F)

Ordering Information

A²B 1.0 Bus Monitor

Part Number: AKT-1500

A²B 2.0 Bus Monitor

Part Number: AKT-1600

Country of Origin: USA HTS: 8473.30.1180

ECCN: EAR99

Chapter 7. Troubleshooting

-mu|||m||

Issue	Possible Cause	Solution
Status LED Flashing Red	The device has an invalid or missing feature license key	Check to see if you have a copy of the license file and re-install it on the internal sf: filesystem. If not, contact support at flextechakt.com
I/O LED Steady Red	Bias reversed on A ² B	See <u>Connect the Pocket Bus</u> <u>Monitor into an A²B Network</u>
No USB Audio in Windows	Windows Audio Enhancement is On for the A ² B Bus Monitor	Open Windows Sound Settings, Select the A ² B Bus Monitor audio device and confirm Audio Enhancements is Off.
No audio or SPI	Has your network been properly configured for capture?	See the Enabling Audio and Data capture section.
A ² B Bus Monitor not showing up as an audio device	Windows versions prior to Windows 10, release 1703 do not support the UAC2 USB audio protocol	Use a newer release of Windows
USB Audio dropouts	Windows 10/11 are not real-time operating systems and can fail to transfer USB audio in a timely manner.	Use a different host PC platform, like Linux or Mac, if USB audio is critical.
Extremely high bit errors detected though A ² B appears to function normally	TXLEVEL set too low in the upstream node A2B_TXCTL register.	The A ² B Bus Monitor input circuit is only compatible with the High Transmit Power Setting (0b00)